对于方程组Fs,Gt均为方程Fs[s,w],Gt[t,w],其代数关系式如下,代码见后面,关于函数的方程组求解问题,还需要大神指点,谢谢。(由于几何方程是编辑器编辑公式,故用图片上传,特说明下)

代码如下:
Clear["`*"];
D1 =
2330*(1 +
0.02*I); m1 = 39.1(*板厚0 .005*); Pe = 1000; \[Alpha]0 = 0; \
\[Beta]0 = 0(*谐波力*); R0 = 1; lx =
ly = 0.5; c0 = 1500; \[Rho]0 = 1000; \[Rho]f = 7700; Af =
2.5*10^(-4); Ef = (1 + I*0.02)*1.95*10^11; If1 = (6.25*10^(-7))/
12;(*基本参数*)
Kfx[\[Beta]_, \[Omega]_] := Ef*If1*\[Beta]^4 - \[Rho]f*Af*\[Omega]^2;
Kfy[\[Alpha]_, \[Omega]_] :=
Ef*If1*\[Alpha]^4 - \[Rho]f*Af*\[Omega]^2;(*骨材动态刚度,横纵骨材相同*)
\[Gamma][\[Alpha]_, \[Beta]_, \[Omega]_] :=
If[\[Alpha]^2 + \[Beta]^2 - \[Omega]^2/c0^2 >= 0,
Sqrt[\[Alpha]^2 + \[Beta]^2 - \[Omega]^2/c0^2],
I*Sqrt[\[Omega]^2/c0^2 - \[Alpha]^2 - \[Beta]^2]];
S[\[Alpha]_, \[Beta]_, \[Omega]_] :=
D1*(\[Alpha]^4 + \[Beta]^4 + 2*\[Alpha]^2*\[Beta]^2) -
m1*\[Omega]^2 - \[Rho]0*\[Omega]^2/\[Gamma][\[Alpha], \[Beta], \
\[Omega]];
Sms[m_, s_, \[Omega]_] :=
S[\[Alpha]0 + (2 \[Pi])/lx*m, \[Beta]0 + (2 \[Pi])/ly*s, \[Omega]];
S00[m_, s_, \[Omega]_] := Sms[0, 0, \[Omega]];
\[Delta]0s[s_] := DiscreteDelta[s];
(*定义Fs,Fr,Ht参数,联立方程组*)
(*Fs[s_,\[Omega]_]:=Fs[s,\[Omega]];Ht[t_,\[Omega]_]=Ht[t,\[Omega]];\
*)(*定义空方程组??*)
Solve[{1/Kfx[\[Beta]0 + (2 \[Pi])/ly*s, \[Omega]] +
1/lx Sum[Sms[m, s, \[Omega]], {m, -10, 10}]}*Fs[s, \[Omega]] ==
Pe*Sms[0, 0, \[Omega]]*\[Delta]0s[s] -
1/ly Sum[Sms[t, s, \[Omega]]*Ht[t, \[Omega]], {t, -10, 10}] &&
{1/Kfy[\[Alpha]0 + (2 \[Pi])/lx*t, \[Omega]] +
1/ly Sum[Sms[t, n, \[Omega]], {n, -10, 10}]}*Ht[t, \[Omega]] ==
Pe*Sms[0, 0, \[Omega]]*\[Delta]0s[t] -
1/lx Sum[Sms[t, r, \[Omega]]*Fs[r, \[Omega]], {r, -10, 10}], {Fs[
s, \[Omega]], Ht[t, \[Omega]]}];(*联立方程组,截断10??*)