公告:本站正式转型为非交互式静态网站!
转型:本站将通过笔记和博客的形式继续为大家服务,关于 Mathematica 问答服务请移步至QQ群:365716997
联系:如有问题请联系QQ群管理员,或发送邮件至:lixuan.xyz@qq.com。
感谢:最后非常感谢大家多年来的支持与帮助!
参考《互联网跟帖评论服务管理规定》《中华人民共和国网络安全法》《网络信息内容生态治理规定》《互联网用户账号信息管理规定》

—— 2022-11-27

欢迎来到 Mathematica 问答社区

提问时请贴上文本代码

语法高亮:在编辑器中点击

被禁止的话题:广告破解

请阅读:《提问的智慧》

备用域名:mma.ooo

支持LaTex数学公式
行内公式标识符:\$ 或“$\backslash ($”+“$\backslash )$”,
行间公式标识符:\$\$ 或 “$\backslash [$”+“$\backslash ]$”

社区建议QQ群:365716997

分类

0 投票
3.1k 浏览

对这方面知识还了解不太多,如果概念错了,请指正谢谢
 

data = {{2, 2, 2, 2}, {2, 2, 2, 2}, {2, 2, 2, 2}, {2, 2, 2, 2}, {2, 2,
     2, 2}, {2, 2, 2, 2}, {2, 2, 2, 2}, {2, 2, 2, 2}, {2, 2, 2, 
    2}, {2, 2, 2, 1}, {2, 2, 2, 2}, {2, 2, 2, 2}, {2, 2, 2, 2}, {2, 2,
     2, 2}, {2, 2, 2, 2}, {2, 2, 2, 2}, {2, 2, 2, 2}, {2, 2, 2, 
    2}, {2, 2, 2, 2}, {1, 2, 1, 1}, {2, 2, 2, 2}, {2, 2, 2, 2}, {1, 2,
     2, 2}, {2, 2, 2, 2}, {2, 2, 2, 2}, {2, 2, 2, 2}, {2, 2, 2, 
    2}, {2, 2, 2, 2}, {2, 2, 2, 2}, {2, 2, 2, 2}, {2, 2, 2, 1}, {2, 2,
     2, 2}, {2, 2, 2, 2}, {2, 2, 2, 2}, {2, 2, 2, 2}, {2, 2, 2, 
    2}, {2, 2, 2, 2}, {2, 2, 2, 2}, {2, 1, 2, 2}, {2, 2, 2, 2}, {2, 2,
     2, 2}, {1, 1, 1, 1}, {2, 2, 2, 2}, {2, 1, 2, 2}, {2, 1, 2, 
    2}, {2, 1, 2, 1}, {2, 2, 2, 1}, {2, 2, 2, 2}, {2, 2, 2, 2}, {2, 1,
     1, 1}, {2, 2, 1, 1}, {2, 1, 2, 1}, {2, 2, 2, 2}, {2, 1, 2, 
    1}, {2, 1, 2, 2}, {2, 2, 2, 2}, {2, 1, 2, 1}, {2, 1, 2, 2}, {2, 1,
     1, 1}, {1, 1, 1, 1}, {2, 2, 2, 2}, {1, 1, 1, 1}, {2, 1, 2, 
    1}, {2, 1, 2, 1}, {2, 1, 2, 1}, {2, 1, 2, 1}, {2, 1, 1, 1}, {2, 1,
     2, 1}, {2, 1, 2, 2}, {2, 2, 2, 1}, {2, 1, 1, 2}, {1, 1, 1, 
    1}, {1, 1, 2, 1}, {2, 2, 2, 2}, {2, 1, 2, 1}, {2, 2, 2, 2}, {2, 1,
     1, 1}, {2, 1, 1, 2}, {1, 1, 1, 1}, {1, 1, 2, 2}, {2, 2, 2, 
    2}, {1, 1, 1, 1}, {1, 1, 2, 2}, {2, 2, 2, 2}, {1, 1, 1, 2}, {1, 2,
     1, 2}, {1, 1, 2, 1}, {2, 2, 2, 1}, {2, 2, 2, 2}, {2, 1, 2, 
    2}, {1, 1, 1, 1}, {1, 1, 1, 1}, {1, 1, 1, 1}, {2, 1, 2, 1}, {1, 1,
     1, 1}, {1, 1, 1, 2}, {2, 1, 2, 2}, {1, 1, 2, 1}, {1, 2, 1, 
    1}, {1, 1, 1, 1}, {1, 1, 1, 1}, {1, 2, 2, 2}, {1, 1, 1, 1}, {2, 2,
     1, 1}, {2, 2, 2, 2}, {1, 1, 1, 1}, {2, 2, 2, 2}, {2, 2, 2, 
    2}, {1, 1, 1, 1}, {1, 1, 1, 1}, {1, 1, 1, 1}, {1, 1, 1, 1}, {1, 1,
     1, 1}, {2, 2, 1, 1}, {1, 1, 1, 1}, {2, 1, 1, 1}, {2, 1, 2, 
    1}, {2, 1, 2, 1}, {2, 2, 1, 2}, {1, 1, 1, 1}, {2, 2, 2, 2}, {2, 1,
     2, 1}, {2, 1, 2, 2}, {1, 1, 1, 2}, {2, 2, 2, 2}, {1, 1, 1, 
    1}, {1, 2, 1, 2}, {2, 2, 2, 2}, {2, 2, 2, 2}, {2, 2, 2, 2}, {2, 1,
     1, 2}, {2, 2, 2, 2}, {1, 2, 2, 1}, {2, 1, 1, 1}, {2, 2, 2, 
    1}, {2, 1, 1, 1}, {2, 1, 2, 1}, {2, 1, 1, 1}, {1, 1, 1, 1}, {2, 1,
     1, 2}, {1, 1, 1, 1}, {1, 1, 2, 1}, {1, 1, 1, 1}, {1, 1, 1, 
    2}, {2, 1, 1, 1}, {2, 2, 2, 2}, {2, 2, 2, 2}, {2, 2, 2, 2}, {2, 2,
     2, 2}, {2, 2, 2, 2}, {1, 1, 1, 1}, {2, 2, 2, 2}, {2, 1, 2, 
    1}, {2, 2, 2, 2}, {2, 2, 2, 1}, {1, 2, 1, 2}, {2, 2, 2, 2}, {1, 2,
     1, 2}, {2, 2, 1, 1}, {1, 1, 1, 2}, {2, 2, 2, 2}, {1, 2, 1, 
    1}, {2, 2, 2, 2}, {2, 2, 2, 2}, {2, 2, 2, 2}, {2, 2, 2, 2}, {1, 1,
     1, 1}, {1, 1, 1, 1}, {1, 1, 1, 1}, {2, 2, 2, 2}, {2, 1, 2, 
    1}, {2, 2, 2, 2}, {1, 1, 1, 1}, {1, 1, 2, 1}, {1, 1, 1, 1}, {2, 2,
     1, 1}, {2, 2, 2, 2}, {1, 1, 1, 1}, {2, 2, 1, 2}, {1, 1, 2, 
    2}, {1, 2, 1, 2}, {1, 2, 2, 1}, {2, 2, 2, 2}, {2, 2, 1, 1}, {2, 1,
     2, 1}, {2, 2, 2, 2}, {2, 1, 2, 2}, {1, 1, 1, 2}, {2, 2, 1, 
    1}, {1, 1, 1, 1}, {1, 2, 1, 2}, {2, 2, 2, 1}, {2, 1, 2, 2}, {1, 2,
     1, 2}, {2, 2, 2, 2}, {1, 1, 1, 1}, {2, 1, 2, 1}, {1, 2, 2, 
    2}, {1, 1, 1, 1}, {2, 2, 2, 2}, {1, 1, 1, 1}, {1, 2, 2, 1}, {1, 1,
     1, 1}, {2, 2, 2, 2}, {2, 2, 2, 2}, {1, 1, 1, 1}, {1, 1, 1, 
    1}, {2, 2, 1, 2}, {1, 1, 1, 1}, {2, 2, 2, 2}, {2, 1, 2, 1}, {2, 2,
     1, 1}, {1, 1, 1, 1}, {1, 1, 1, 1}, {2, 2, 2, 2}, {1, 1, 1, 
    1}, {2, 2, 2, 2}, {1, 1, 1, 1}, {1, 1, 1, 1}, {1, 1, 1, 1}, {1, 1,
     2, 1}, {1, 1, 2, 2}, {2, 2, 2, 2}, {2, 2, 2, 2}, {2, 2, 2, 
    2}, {2, 2, 1, 2}, {2, 2, 2, 2}, {1, 1, 2, 2}, {2, 2, 1, 2}, {1, 2,
     1, 2}, {1, 1, 1, 1}, {1, 1, 1, 1}, {1, 1, 2, 2}, {2, 2, 1, 
    1}, {2, 2, 2, 1}, {2, 2, 2, 2}, {2, 2, 1, 2}, {2, 2, 2, 2}, {1, 1,
     2, 1}, {2, 2, 1, 1}, {1, 2, 1, 1}, {2, 2, 2, 2}, {1, 2, 1, 
    1}, {1, 1, 1, 1}, {1, 1, 1, 1}, {2, 2, 2, 2}, {1, 1, 1, 1}, {2, 2,
     2, 2}, {1, 1, 1, 1}, {1, 1, 2, 1}, {1, 2, 1, 2}, {1, 1, 1, 
    1}, {1, 1, 1, 2}, {2, 1, 2, 1}, {1, 1, 1, 1}, {1, 2, 1, 2}, {2, 2,
     2, 2}, {2, 2, 2, 2}, {1, 2, 2, 2}, {1, 1, 1, 1}, {1, 1, 2, 
    1}, {1, 1, 1, 1}, {2, 2, 2, 2}, {2, 1, 2, 2}, {1, 1, 2, 1}, {1, 2,
     1, 2}, {2, 2, 2, 2}, {1, 1, 2, 1}, {1, 2, 2, 1}, {1, 1, 1, 
    1}, {2, 1, 1, 1}, {1, 1, 2, 1}, {2, 1, 1, 1}, {1, 1, 2, 2}, {1, 1,
     2, 2}, {1, 1, 2, 2}, {2, 2, 2, 2}, {1, 2, 2, 2}, {2, 2, 2, 
    1}, {1, 1, 1, 1}};
jl2[x_List] := x[[1]].x[[2]]/((x[[1]].x[[1]]) (x[[2]].x[[2]]))^(1/2);
ModDistance[a_, b_] := jl2[{#1, #2}] &[a, b] 
FindClusters[data, DistanceFunction -> ModDistance]

 

分类:列表操作 | 用户: 新手 (81 分)

1个回答

+1 投票
 
已采纳

你是想说在聚类分析中,使用夹角余弦作为距离函数吧。Mma中有这样一个函数:CosineDistance,被译为“余弦位距”,定义为:1-夹角余弦。

下面的代码将你的数据自动聚为18类:

FindClusters[data, DistanceFunction -> CosineDistance]

而且直接使用夹角余弦并被聚成了一类:

fDistance[u_, v_] := 1 - CosineDistance[u, v]
FindClusters[data, DistanceFunction -> fDistance]

当然也可以指定类的数量,比如:

fDistance[u_, v_] := 1 - CosineDistance[u, v]
FindClusters[data, 5, DistanceFunction -> fDistance]

另外,你定义的函数虽然没有问题,但比较繁琐。建议改成这样:

ModDistance[x_, y_] := x.y/Norm[x]/Norm[y]

或者使用你的jl2:

ModDistance[a_, b_] := jl2[{a, b}]

 

用户: 野鹤 (5.1k 分)
采纳于 用户:新手
1,距离为零是什么意思?
聚类分析中,是计算所有点的两两距离,然后逐次聚类。
2,我也不清楚这两个方法的根本区别是什么。
一般来说,Agglomerate算得快,Optimize算得慢。
关于那个距离我想错,我应该想问为什么我的数据用FindClusters[data, DistanceFunction -> CosineDistance]聚成18类有很多重复的一类呀
貌似这是FindClusters的问题啊,像{2, 2, 2, 2}都应该聚成一类的啊。
问题可能有点久了
只是想确定一下FindCluster的聚类是按照小距离准则聚类的吗
应该不总是用最小距离法。比如使用课本上的一个例子算一下:FindClusters[{1, 2, 5, 7, 9, 10}, 4]
...