最近计算一个结构力学问题,结果十分冗长,需要化简,采用前几次化简的技巧,许多地方达不到化简预期目的,已经给出了详细的替换规则,可是替换后还是...
A = {{0, 0, 1, 0}, {0, 0, 0, 1}, {-(k11/m1), -(k12/m1), 0,
0}, {-(k21/m2), -(k22/m2), 0, 0}};
Eigenvalues[A];
Eigenvectors[A];
代码运行后运行下面的一段代码,运行时间略长,但可以返回结果的
\[EmptySet] =
Inner[Times, Transpose[ Eigenvectors[A]], E^(Eigenvalues[A] t),
List];
((\[EmptySet].(Inverse[\[EmptySet]] /. t -> 0) // FullSimplify //
Collect[#, Cosh[_]] & //
Collect[#, Sinh[_]] &) /. (2 (2 k12 k21 - k11 k22 ) m1 m2) :>
Expand@(2 (2 k12 k21 - k11 k22 ) m1 m2)) /.
k22^2 m1^2 + 4 k12 k21 m1 m2 - 2 k11 k22 m1 m2 + k11^2 m2^2 ->
Expression1 /. {Sqrt[Expression1] - k22 m1 + k11 m2 ->
Expression2, Sqrt[Expression1] + k22 m1 - k11 m2 -> Expression3,
Sqrt[Expression1] - k22 m1 - k11 m2 -> Expression4,
Sqrt[Expression1] + k22 m1 + k11 m2 ->
Expression5, -Sqrt[Expression1] - k22 m1 -
k11 m2 -> -Expression5} /. {Expression3 Expression5 ->
Expression6, Expression2 Expression4 -> Expression7} /.
(k12 k21 - k11 k22)^p_ Expression1 ^Rational[p_, 2] -> Expression8^p
但是好多地方替换失效...
下面把这个问题一部分简化一下
FullSimplify[1/Sqrt[
2 k22^2 m1^2 + 4 (2 k12 k21 - k11 k22) m1 m2 + 2 k11^2 m2^2],
Assumptions -> {k22^2 m1^2 + 2 (2 k12 k21 - k11 k22) m1 m2 +
k11^2 m2^2 == k}]