D[Subscript[z, 1][Subscript[T, 1]], Subscript[T, 1]] =
Subscript[z, 2][Subscript[T,
1]] == \[PartialD]H/\[PartialD]Subscript[z, 2][Subscript[T, 1]];
D[Subscript[z, 2][Subscript[T, 1]], Subscript[T, 1]] = -Subscript[
\!\(\*OverscriptBox[\(\[Mu]\), \(~\)]\), 1] Subscript[z, 1][Subscript[
T, 1]] +
Subscript[\[Eta], 1] Subscript[z, 1][Subscript[T, 1]]^3 +
2 Subscript[\[Beta], 12]
Subscript[z, 1][Subscript[T, 1]] l[Subscript[T,
1]]^2 == -(\[PartialD]H/\[PartialD]Subscript[z, 1][Subscript[T,
1]]);
D[l[Subscript[T, 1]], Subscript[T, 1]] =
0 == \[PartialD]H/\[PartialD]\[Phi][Subscript[T, 1]];
l[Subscript[T, 1]] D[\[Phi][Subscript[T, 1]], Subscript[T,
1]] = -Subscript[\[Sigma], 2] l[Subscript[T, 1]] +
2 Subscript[\[Beta], 12]
l[Subscript[T, 1]] Subscript[z, 1][Subscript[T, 1]]^2 +
3/2 Subscript[\[Beta], 24]
l[Subscript[T, 1]]^3 == -(\[PartialD]H/\[PartialD]l[Subscript[T,
1]]);
H = 1/2 Subscript[z, 2]^2 + 1/2 Subscript[
\!\(\*OverscriptBox[\(\[Mu]\), \(~\)]\), 1] Subscript[z, 1]^2 -
1/4 Subscript[\[Eta], 1] Subscript[z, 1]^4 +
1/2 Subscript[\[Sigma], 2] l^2 - 3/8 Subscript[\[Beta], 24] l^4 -
Subscript[\[Beta], 12] l^2 Subscript[z, 1]^2
上面的方程组,怎么通过MMA求得最后的H的表达式