公告:本站正式转型为非交互式静态网站!
转型:本站将通过笔记和博客的形式继续为大家服务,关于 Mathematica 问答服务请移步至QQ群:365716997
联系:如有问题请联系QQ群管理员,或发送邮件至:lixuan.xyz@qq.com。
感谢:最后非常感谢大家多年来的支持与帮助!
参考《互联网跟帖评论服务管理规定》《中华人民共和国网络安全法》《网络信息内容生态治理规定》《互联网用户账号信息管理规定》

—— 2022-11-27

欢迎来到 Mathematica 问答社区

提问时请贴上文本代码

语法高亮:在编辑器中点击

被禁止的话题:广告破解

请阅读:《提问的智慧》

备用域名:mma.ooo

支持LaTex数学公式
行内公式标识符:\$ 或“$\backslash ($”+“$\backslash )$”,
行间公式标识符:\$\$ 或 “$\backslash [$”+“$\backslash ]$”

社区建议QQ群:365716997

分类

0 投票
416 浏览
源代码如下

Clear["Global`*"];

pin = 100*(10^(-3)); g = 58*(10^-6); s = 100*(10^-6); w =

 300*(10^-6); lamda0 = 46; d = 10*(10^-6); l = 200*(10^-6); L :=

 d + l + lc; W := g + s/2 + w; T0 = 300; lc = 300*(10^-6); ka =

 10*(10^7);

ds = 22*(10^-6);

\[CapitalPhi]0 := 2*pin/(ds*(g^2));

sigmod[x_, a_] := 1/(E^(-x*a) + 1);

x1[x_] := sigmod[x - (lc - g/4), ka];

x2[x_] := sigmod[x - lc, ka];

x3[x_] := sigmod[x, ka];

x4[x_] := sigmod[x - L, ka];

y1[y_] := sigmod[y - w, ka];

y2[y_] := sigmod[y - (w + g), ka];

y3[y_] := sigmod[y - W, ka];

y4[y_] := sigmod[y, ka];

ux[x_] := x1[x] - x2[x];

uy[y_] := y1[y] - y2[y];

uz[x_, y_] := ux[x]*uy[y]*\[CapitalPhi]0;

lamda[x_,

   y_] := (1.5*lamda0*(x3[x] - x2[x]) +

     lamda0*(x2[x] - x4[x]))*(y4[y] - y3[y]);

region = Rectangle[{0, 0}, {L, W}];

pdeSoln =

  NDSolveValue[{\!\(TraditionalForm\`\((\(lamda(x, y)\)\ \*

FractionBox[

RowBox[{

SuperscriptBox["\[PartialD]", "2"],

RowBox[{"t", "(",

RowBox[{"x", ",", "y"}], ")"}]}],

RowBox[{

RowBox[{"\[PartialD]", "x"}], "\[ThinSpace]",

RowBox[{"\[PartialD]", "x"}]}],

MultilineFunction->None] + \*

FractionBox[

RowBox[{"\[PartialD]",

RowBox[{"lamda", "(",

RowBox[{"x", ",", "y"}], ")"}]}],

RowBox[{"\[PartialD]", "x"}],

MultilineFunction->None]\ \*

FractionBox[

RowBox[{"\[PartialD]",

RowBox[{"t", "(",

RowBox[{"x", ",", "y"}], ")"}]}],

RowBox[{"\[PartialD]", "x"}],

MultilineFunction->None])\) + \((\(lamda(x, y)\)\ \*

FractionBox[

RowBox[{

SuperscriptBox["\[PartialD]", "2"],

RowBox[{"t", "(",

RowBox[{"x", ",", "y"}], ")"}]}],

RowBox[{

RowBox[{"\[PartialD]", "y"}], "\[ThinSpace]",

RowBox[{"\[PartialD]", "y"}]}],

MultilineFunction->None] + \*

FractionBox[

RowBox[{"\[PartialD]",

RowBox[{"lamda", "(",

RowBox[{"x", ",", "y"}], ")"}]}],

RowBox[{"\[PartialD]", "y"}],

MultilineFunction->None]\ \*

FractionBox[

RowBox[{"\[PartialD]",

RowBox[{"t", "(",

RowBox[{"x", ",", "y"}], ")"}]}],

RowBox[{"\[PartialD]", "y"}],

MultilineFunction->None])\)\) + uz[x, y] ==

     NeumannValue[0, y == W] + NeumannValue[0, x == 0],

    {DirichletCondition[t[x, y] == T0, x == L],

     DirichletCondition[t[x, y] == T0, y == 0]}},

   t, {x, y} \[Element] region];

ContourPlot[pdeSoln[x, y], {x, y} \[Element] region,

 Mesh -> None, ColorFunction -> "TemperatureMap",

 Contours -> 30, AspectRatio -> Automatic,

 FrameTicksStyle -> Directive[Black, 18]]

Plot3D[pdeSoln[x, y], {x, y} \[Element] region]
分类:方程 | 用户: wsk4715 (21 分)

登录 或者 注册 后回答这个问题。

...