In[5]:= ForAll[\[CurlyEpsilon], \[CurlyEpsilon] > 0,
Exists[\[Delta], \[Delta] > 0,
Implies[0 < RealAbs[x] < \[Delta],
0 < Abs[f[x]] < \[CurlyEpsilon]]]] // Resolve
ForAll[\[CurlyEpsilon], \[CurlyEpsilon] > 0,
Exists[\[Delta], \[Delta] > 0,
Implies[0 < RealAbs[x] < \[Delta],
0 < RealAbs[f[x]] < \[CurlyEpsilon]]]] // Resolve
True
\!\(
\*SubscriptBox[\(\[ForAll]\), \({\[CurlyEpsilon]}, \[CurlyEpsilon] >
0\)]\(
\*SubscriptBox[\(\[Exists]\), \({\[Delta]}, \[Delta] >
0\)]\((0 < RealAbs[x] < \[Delta] \[Implies]
0 < RealAbs[f[x]] < \[CurlyEpsilon])\)\)\)
Out[5]= \!\(
\*SubscriptBox[\(\[ForAll]\), \({\[CurlyEpsilon]}, \[CurlyEpsilon] >
0\)]\(
\*SubscriptBox[\(\[Exists]\), \({\[Delta]}, \[Delta] >
0\)]\((0 < RealAbs[x] < \[Delta] \[Implies]
0 < Abs[f[x]] < \[CurlyEpsilon])\)\)\)
Out[6]= \!\(
\*SubscriptBox[\(\[ForAll]\), \({\[CurlyEpsilon]}, \[CurlyEpsilon] >
0\)]\(
\*SubscriptBox[\(\[Exists]\), \({\[Delta]}, \[Delta] >
0\)]\((0 < RealAbs[x] < \[Delta] \[Implies]
0 < RealAbs[f[x]] < \[CurlyEpsilon])\)\)\)
Out[7]= True
Out[8]= \!\(
\*SubscriptBox[\(\[ForAll]\), \({\[CurlyEpsilon]}, \[CurlyEpsilon] >
0\)]\(
\*SubscriptBox[\(\[Exists]\), \({\[Delta]}, \[Delta] >
0\)]\((0 < RealAbs[x] < \[Delta] \[Implies]
0 < RealAbs[f[x]] < \[CurlyEpsilon])\)\)\)
还是不太明白您的意思